Word Category Maps based on Emergent Features Created by ICA

نویسندگان

  • Jaakko J. Väyrynen
  • Timo Honkela
چکیده

In this paper, we assume that word co-occurrence statistics can be used to extract meaningful features, exhibiting syntactic and semantic behavior, from text data. Independent component analysis (ICA), an unsupervised statistical method, is applied to word usage statistics, calculated from a natural language corpora, to extract a number of features. With a self-organizing map (SOM), we will demonstrate that the extracted vector representation for words can further be applied to other tasks. It is also demonstrated, that the ICA-based encoding scheme is a good alternative to random projection (RP), a method commonly used in text analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improvement in Support Vector Machines Algorithm with Imperialism Competitive Algorithm for Text Documents Classification

Due to the exponential growth of electronic texts, their organization and management requires a tool to provide information and data in search of users in the shortest possible time. Thus, classification methods have become very important in recent years. In natural language processing and especially text processing, one of the most basic tasks is automatic text classification. Moreover, text ...

متن کامل

Comparison of independent component analysis and conventional hypothesis-driven analysis for clinical functional MR image processing.

BACKGROUND AND PURPOSE With independent component analysis (ICA), regions of activation can be identified on functional MR (fMR) images without a priori knowledge of expected hemodynamic responses. The purpose of this study was to compare the results of fMR imaging data processed with spatial ICA with results obtained with conventional hypothesis-driven analysis. METHODS Eleven patients with ...

متن کامل

Semantic analysis in word vector spaces with ICA and feature selection

In this article, we test a word vector space model using direct evaluation methods. We show that independent component analysis is able to automatically produce meaningful components that correspond to semantic category labels. We also study the amount of features needed to represent a category using feature selection with syntactic and semantic category test sets.

متن کامل

Design and implementation of Persian spelling detection and correction system based on Semantic

Persian Language has a special feature (grapheme, homophone, and multi-shape clinging characters) in electronic devices. Furthermore, design and implementation of NLP tools for Persian are more challenging than other languages (e.g. English or German). Spelling tools are used widely for editing user texts like emails and text in editors.  Also developing Persian tools will provide Persian progr...

متن کامل

پارس مورف: تحلیلگر صرفی زبان فارسی

In this paper, the theoretical foundation, the way of implementation and the uses of Pars Morph, a Persian morphological analyzer is introduced. Pars Morph is a rule-based Persian morphological analysis system, which analyzes the internal structure of word in Persian and determines the grammatical category and function of the word parts. Pars Morph being in link with a lexicon covering about 45...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004